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ABSTRACT
The rapid rise of Large Language Models (LLMs) has raised significant concerns regarding their environmental
impact. The increased language model capability that arises from scaling their size has encouraged the development
of exponentially larger models, which increases the carbon footprint of both inference and training. We present
a comprehensive study that measures the energy consumption of running LLM inference across both different
generations of datacenter-grade GPU platforms and different model sizes. To compare the scaling of hardware
capabilities with the scaling of model requirements, we monitor power consumption, memory usage, and
performance metrics such as token latency and throughput. Then, we calculate sustainability metrics such as
carbon per token and model FLOPs utilization (MFU) to derive insights on how to reduce both the operational
and embodied carbon emissions of LLM serving applications. We find that on modern GPU platforms, increasing
batch size can lead to a 11x smaller carbon emission per token with only a 2x increase in user-perceived latency
per token. Additionally, we find that the total utilization of compute FLOPs on datacenter-grade GPUs running
inference workloads is only 2%, identifying opportunities for hardware platforms with less compute capacity that
could reduce embodied carbon emissions.

1 INTRODUCTION

Climate change is one of the most pressing challenges of our
time, and projections currently estimate that Information and
Communications Technologies (ICT) could constitute up to
20% of carbon emissions by 2030 (Jones et al., 2018). This
rapid rise in ICT emissions is in part due to the exponential
growth of both Deep Learning (DL) applications and their
model size, which increases model accuracy and capability
at the expense of a larger environmental footprint (Wu et al.,
2022).

This carbon footprint can be attributed to both the operation
of DL applications, which has been estimated to consti-
tute 0.25% of the USA’s annual power consumption from
running recently sold GPUs alone (Chien, 2023), and the
embodied footprint of manufacturing DL hardware, which
includes the estimated sales of 3.2 million NVIDIA A100
GPUs in 2022 and 2023 (Chien, 2023).

While these specialized hardware platforms are necessitated
by their higher energy efficiency and performance compared
to more general-purpose options, their increasing impact on
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the environment should be systematically measured and min-
imized. To ensure environmentally friendly advancement of
ML capability and usage, emerging ML hardware should be
designed to be efficient in terms of overall silicon utilization,
and ML systems should prioritize carbon-efficiency as an
optimization metric.

To this end, we take a step towards designing sustainable
systems and hardware for ML by first understanding modern
LLM performance and energy characteristics on existing off-
the-shelf GPUs. Alongside our operational carbon analysis,
we measure the utilization of individual resources such as
memory bandwidth, memory capacity, and compute capac-
ity across various LLM workloads. We use our analysis to
quantify and compare the embodied versus operational car-
bon costs of LLM inference, and identify potential methods
to reduce overall carbon emissions.

2 MOTIVATION

The compute and memory requirements of training and
serving large models is growing exponentially. For modern
transformer-based models in particular, total training FLOPs
and parameter count has been scaling by 750x/2yrs and
410x/2yrs, respectively (Gholami et al., 2024). The required
FLOPs for inferencing these growing transformer models
also follows this trend. Figure 1 demonstrates how to total
TFLOPs required for inferencing LLMs scales linearly with
respect to both the sequence length and the model size.

Aside from the rapidly increasing compute requirements,
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DRAM bandwidth and capacity requirements have quickly
become a bottleneck for efficient transformer inference.
This is due to the requirement of storing model weights
in DRAM, along with the inference optimization of KV-
caching, which eliminates the need of recomputing ”key”
and ”value” tensors of previous tokens at the expensive of
storing them in DRAM. Figure 2(a) illustrates the scaling
of required DRAM capacity for serving a single inference
request with respect to model size and sequence length,
with the required memory for KV-caching dominating as
sequence lengths grows.

However, the capability of modern AI hardware platforms
is struggling to keep pace. Figure 2(b) demonstrates the
scaling of compute capacity, memory capacity, and memory
bandwidth across different generations of NVIDIA GPUs.
Peak TFLOPs of these platforms has been scaling by about
3.2x/2yrs, whereas HBM bandwidth and capacity have been
scaling by only 1.6/2yrs and 1.7x/2yrs, respectively. The
difference in scaling speeds of compute and memory, caused
by the difficulties in technology scaling for memory devices,
leads to an exponentially growing gap between the compute
capacity of a device and its HBM capacity. For LLM in-
ference in particular, which suffers from quickly growing
memory overheads, this contributes to a growing memory
bottleneck.

Figure 1. (a) Llama2; (b) GPT2 .

The growing gap between model requirements and hardware
capabilities causes significant carbon emissions because (1)
the number of GPUs required to train and serve a model
grows larger and leads to more embodied carbon emissions,
(2) the amount of FLOPs and data movement operations
for training and serving also increases, causing more opera-
tional carbon emissions.

Our research seeks to answer the question of how the oper-
ational carbon emissions from LLM inference scales with
model size, and whether we can trade off latency per token
in order to reduce the operational carbon emission per token.

Figure 2. (a) The VRAM for models scales exponentially as the
size of the model goes up; (b) GPU development trend over the
last decade.

Additionally, we seek to identify opportunities for reduc-
ing the embodied carbon emissions of LLM inference by
examining the overall Model Flops Utilization (MFU) of
datacenter-grade GPUs under inference workloads, poten-
tially highlighting the need for separate hardware platforms
for inferencing and training.

3 RELATED WORKS

While modern DL-focused hardware platforms such as
GPUs offer both competitive performance and the flexibility
to accelerate a wide variety of DL applications, their silicon
is both power-inefficient (Patel et al., 2023) and severely
underutilized (Weng et al., 2022) in large-scale cloud deploy-
ments. While previous works have examined cluster-level
scheduling techniques in order to keep coarse-grained GPU
utilization high, our work instead examines the finer-grained
silicon utilization metrics of overall compute unit utilization
given a GPU with an available workload. Combined with
efforts to keep cluster-level GPU utilization high, a high
utilization efficiency of individual GPU silicon promises
further reduction in the embodied emissions associated with
serving large-scale models.

Additionally, we examine the energy-performance tradeoff
on the granularity of individual platforms, whereas previous
works analyze the methods to reduce inference energy on
a cluster-level scale (Patel et al., 2024). Our work, while
orthogonal to the coarser-grained power management tech-
niques, presents further opportunities for operational carbon
reduction of LLM inference when used in tandem with
cluster-level power management techniques.

Previous work has also examined energy per token and
overall GPU utilization numbers for LLM inference across
both single-node and multi-node GPU configurations (Samsi
et al., 2023), which demonstrates high utilization of GPU
compute units from numbers reported by NVIDIA DCGM.
Our work builds upon this by incorporating carbon emis-
sions analysis on top of the energy usage analysis, and
examining GPU utilization from the hardware perspective
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of theoretical versus achieved FLOPs.

4 METHODOLOGY

4.1 System Overview

We propose and develop a carbon profiling framework, , to
perform carbon and performance characterization of LLM
workloads. Our framework consists of a workload genera-
tor which synthesizes inference workloads from the open-
source prompt dataset for representative queries, a wrapper
to run our workload generator with heterogenous GPU con-
figurations, and real-time power monitors which measure
GPU power usage at a second-scale granularity. Then an
output parsing component that analyze the utilization and
estimates carbon usage.
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Figure 3. An overview of ’s carbon profiling system of LLM infer-
ence on off-the-shelf GPUs.

4.2 Model Inference Framework: Tensorrt-LLM

We leverage NVIDIA’s TensorRT-LLM libraries to run our
experiments, which offers state-of-the-art engines for effi-
cient LLM inference that can be utilized through a PyTorch-
like Python API for NVIDIA GPUs. The engines built with
TensorRT-LLM can be executed on a wide range of GPU
configurations, utilizing Tensor Parallelism and Pipeline
Parallelism to scale from single GPU nodes to multi-GPU
nodes. We limit our analysis to models that can fit on single-
GPU nodes due to the time constraints of a course project.

4.3 Power Measurement: NVSMI

We utilize Nvidia’s command-line utility for querying and
managing various states of NVIDIA GPU devices. While
the workload generator is running, we utilize a separate
script to continuously profile power, temperature, memory
usage, and SM utilization on intervals of 1-3 seconds.

4.4 Carbon Modeling

Using power measurements from our experiments, we plot
power against time and integrate to find the area under the
discrete measurements and calculate the total energy (joules)
consumed during the inferencing. We then use a carbon-

Table 1. NVIDIA V100 Hardware Specification
NVIDIA V100

GPU TWO NVIDIA GV100GL (TESLA V100S PCIE 32GB)
CPU TWO 32-CORE AMD 7542 AT 2.9GH
RAM 512GB ECC MEMORY (16X 32 GB 3200MHZ DDR4)
DISK ONE 2TB 7200 RPM 6G SATA HDD
NIC DUAL-PORT MELLANOX CONNECTX-5 25 GB NIC (PCIE V4.0)

/BLUEFIELD2 100 GB SMARTNIC

Table 2. NVIDIA A100 Hardware Specification
NVIDIA A100

GPU NVIDIA HGX A100 GPU (4X 40GB A100 SXM4 GPUS)
CPU TWO 24-CORE AMD 7413 AT 2.65GHZ
RAM 512GB ECC MEMORY (16X 32 GB 3200MT/S RDIMMS)
DISK TWO 480 GB 6G SATA SSD/ONE 1.6 TB PCIE4 X4 NVME SSD
NIC DUAL-PORT MELLANOX CONNECTX-6 DX 100GB NIC

intensity trace from the region in which the data center for
the GPU is located, which converts units of energy into
grams of CO2eq emissions depending on the amount of re-
newable energies available in the current geographic region.

Given the total amount of output tokens generated during
the inference process, we are then able to calculate the
carbon emissions per token across our different experiments.
estimates carbon emission via the following formula:

Carbon Emission =

(∫ T

0

Power

)
· Carbon Trace

The carbon intensity traces are real-time data collected
from an open-sourced platform “Electricity Maps” (Elec-
tricityMaps, 2023).

then calculates carbon per token to understand the emission
implication of each GPU hardware.

Carbon / Token = Carbon Emission / Total Generated Tokens

5 EXPERIMENTS

5.1 Hardware Platforms

We compare the model performance on two Nvidia Tensor
Core GPUs: A100-SXM4-40GB and V100S-PCIE-32GB.
The servers are located in CloudLab data centers, in Wis-
consin. The hardware specifications are detailed in Table 1.
A single V100-PCIE-32GB board advertises 112 TFLOPS
of compute, and 32GB of HBM2 memory that supports 900
GB/s of bandwidth. An individual platform in the A100-
SXM4-40GB pod boasts 624 TFLOPS of compute (5.6x of
V100), along with 40GB of HBM2 capacity (1.25 of V100)
that supports up to 1,555 GB/s of bandwidth (1.7x of V100).

5.2 Models & Hyperparameters

We characterize the performance and utilization of the
Llama2 and GPT2 models with varying sizes, in order to
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understand how carbon per token and GPU compute utiliza-
tion scale across (1) GPU generations and (2) LLM model
size.

For the scope of the course project, a knob that we choose
to tune is batch size. Increasing the batch size of inference
requests increases the throughput of tokens at the expense
of potentially increasing the latency per token that a user
would experience. Consequently, it presents an opportunity
to reduce operational carbon emissions by outputting more
total tokens per second at a similar power budget to single
batch inference. We profile the models with TensorRT-LLM
by consecutively varying the batch size from 1 until the GPU
hardware platform encounters an out-of-memory (”OOM”)
error. This hard memory limit allows us to fully saturate
the GPU capacity before drawing sustainability conclusions.
The maximum achievable batch sizes for Llama2 7B and
13B are detailed in table 3, and the maximum achievable
batch sizes for GPT2 137M, 812M, and 2B are detailed in
table 4.

Table 3. The maximum batch size for each tested Llama2 model
until OOM.
Model Size V100 32GB A100 80GB

Max. Batch Size Max. Batch Size

7B 14 22
7B, WQ4bit 22 N/A
13B 4 8
13B, WQ4bit 12 N/A

Table 4. The maximum batch sizes for each tested GPT2 model
until OOM.
Model Size V100 32GB Max. Batch Size

137M 544
812M 128
2B 72

5.3 Prompt Set

In our research, we employed the ShareGPT prompt dataset
(Team, 2023) to conduct profiling experiments. This dataset
comprises authentic interactions between users and the
closed-source ChatGPT model. To ensure data consistency
and relevance, we refined the raw prompt data through sev-
eral steps with following similar guidelines vLLM work-
load generator(Kwon et al., 2023). Firstly, we constrained
the upper bound intput and output token limit to 1000 for
Llama2 models, and 500 for GPT2 models. Secondly, we
established a lower bound token limit of 4. Thirdly, we elim-
inated conversations comprising fewer than 2 rounds. Sub-
sequently, for each experiment iteration, we randomly sam-
pled 100 prompts from the refined dataset. These prompts

were then fed into the model to emulate real-world serving
workload scenarios.

6 EVALUATIONS

6.1 Latency Throughput Trade-off

When serving LLMs, latency is often a critical optimiza-
tion metric, as many companies may want their services or
chatbots to feel as interactive as possible. Throughput is
also an important consideration, as enabling higher tokens
per second on a single GPU reduces the amount of GPUs
required to run services. Increasing the throughput can be
easily achieved by increasing the batch size of requests, but
may come at the cost of an end user experiencing a higher
per-token latency for their individual query. To quantify
this tradeoff, we calculated the average tokens per second
and average user-perceived seconds per token across all the
batch sizes in our evaluation.

For unquantized Llama2-7B inference on a single A100
node, we show that by increasing our batch size from 1 to
22, we achieve a 10x improvement in tokens per second at
a cost of only 2x higher user-perceived seconds per token.
We observe similar trends across the different model types,
and all user-perceived seconds per token remains under the
average human token reading rate of around 5 tokens per
second. As these models are relatively small compared to
modern models that scale to hundreds of billions of parame-
ters, memory issues arise before we are able to violate the
human readability SLO. We leave the evaluation of larger
models to future work to further examine this tradeoff.

6.2 GPU Utilization

To identify opportunities to reduce the carbon emissions of
datacenter-grade GPUs for inference workloads, we calcu-
late the total compute FLOPs utilization of our experiment
platforms. We use the calflops tool (xiaoju ye, 2023) in or-
der to calculate the total amount of model FLOPs necessary
to compute every sequence of a given batch in our experi-
ment with a specified model. Then, based on the latency of
of the batch and the peak TFLOPS achievable by the test
hardware platform in the duration of the batch completion,
we calculate the model flops utilization (MFU) of the GPU
given by the following definition.

MFU = achieved FLOPs / peak theoretical FLOPs

Our calculations show that for a batch size of 1, the A100
GPU is able to achieve only around 2.43% and 2.34% of
peak FLOPs utilization of Llama 7B and 13B models respec-
tively, whereas the V100 GPU is able to achieve only about
1.5% of peak FLOPs. This can be explained due to LLM
inference being unable to utilize the Tensor Cores of the
GPU due to its auto-regressive nature. Because the Tensor
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Figure 4. (a) throughput-latency tradeoff for Llama2 without
weight quantization; (b) throughput-latency tradeoff for GPT2
without weight quantization; (c) throughput-latency tradeoff for
Llama2 with weight quantization

Cores account for the majority of GPU FLOPs, the utiliza-
tion of total compute during inference workloads is quite
small. This identifies significant opportunities for embod-
ied carbon reduction in inference-optimized LLM hardware.
While GPUs can be used for both training and inference,
many GPUs for a large service still must be dedicated in-
ference nodes in order to meet request demand. Thus, if
these GPUs opted for less tensor cores than their training-
optimized counterparts, considerable overall die area (and
thus embodied carbon emissions) could be saved.

6.3 Energy Consumption

As described in Section 4.3 that collects the power reading
throughout the characterization experiments. Here, Fig. 6 (b)
and (c) show the raw power reading during each experiment.

From the raw power reading, A100 demonstrates higher
power consumption than V100 for inference of the same
model. Take Llama2-7B as an example, the bright orange
line on the top of Fig. 6 (b) is A100, whereas the correspond-
ing V100 is the dark purple line in the medium range of Fig.
6 (b). This result aligns with our expectation as A100 has a
higher number of FLOPs than V100, which consumes more

Figure 5. GPU model flops utilization (MFU) with batch size 1

Figure 6. (a) The 24-hour carbon intensity trace for the Wiscon-
sin region on May 3rd, 2024; (b) The raw power reading of
Llama2 inference experiments; (c) The raw power reading of
GPT2 inference experiments; The legend follows the format
of:number of parameters batch size GPU memory.

energy than running V100. In that, higher-performing GPUs
consume more energy per second than lower-performing
GPUs.

Another dimension of the analysis is batch sizes. Again,
from the raw power reading, we can see in Fig. 6 (c) that
a bigger batch size uses more energy per second than a
smaller batch size.

However, this is not accurate to say that higher-performing
GPUs or bigger batch sizes consume more energy per sec-
ond. One important factor that is not shown in Fig. 6 is
the duration of the entire experiment. If we refer back to
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Fig. 4, higher-performing GPUs and bigger batch sizes both
result in lower average request token latency. Thus, we will
examine the sustainability implication of LLM inference
with the “per-token” metrics in the upcoming section.

6.4 Carbon Footprint

Now that we have the energy consumption numbers, the
next step is to calculate the carbon emission of each LLM
inference experiment. To collect real carbon intensity data,
we took real-time carbon emission data from Wisconsin,
the region where the GPUs’ data center is located at as de-
scribed in 5.1. For the scope of the project, we ran the
experiment for less than an hour. Thus, we selected a single
hourly carbon intensity data point 413 gCO2eq/kWh from
the Wisconsin region for the carbon emission calculation.
Our analysis shows that for Llama-7B inference on the A100
node, we can reduce the carbon per token by 11x by increas-
ing the batch size from 1 to 22. Given that this batch size
increase only results in 2x higher user-perceived seconds
per token, we demonstrate that prioritizing high batch sizes
on GPU platforms is a promising avenue for operational
carbon emissions reduction for LLM inference.

Figure 7. (a) The carbon emission per token for Llama2 inferences.
The figure compares emissions at a batch size of 1 and at a max-
imum batch size; (b) The carbon emission per token for GPT2
inferences. The figure compares emissions at a batch size of 1
and at a maximum batch size; The legend follows the format
of:number of parameters batch size GPU memory.

If we compare across GPU platforms, A100 is 1.3x more
carbon emission in terms of carbon per token for Llama2-7B
(batch size of 1) inference as shown in Fig. 7. In that, we
demonstrated that higher performing GPUs are also more
operational carbon efficient than lower performing GPUs.

7 CONCLUSION

Our work, , characterizes opportunities for reducing the car-
bon emissions of LLM inference on GPU platforms. We
demonstrate that prioritizing large batch sizes can lead to an
11x decrease in operational carbon per token compared to a
batch size of 1, meaning that schedulers that optimize for
throughput during LLM inference have significant opportu-
nities for carbon savings. We also highlight the issue of ex-
tremely low peak FLOPs utilization of GPU platforms (2%)
in LLM inference that is caused by their auto-regressive na-
ture, which identifies leaner compute platforms as opportuni-
ties for embodied carbon reduction for LLM inference. Due
to the unique characteristics of LLM inference workloads,
there is great opportunity to reduce its carbon emissions if
sustainability is used as a first-order design metric. This
work calls for awareness of building sustainable systems for
machine learning, demonstrates opportunities in the design
space, and serves as the first step of the authors’ ongoing
research project.

GitHub Link, for A100/V100: https://github.com/
edwinlim0919/sustainable-deep-learning/
tree/main
GitHub Link, for Jetsons: https://github.com/
melishua/jetson-profiler
Youtube Link: https://www.youtube.com/
watch?v=V6VK4kZLdO8
Presentation Slide Link: https://
docs.google.com/presentation/d/
1VdTn6PMlEFfs-Xid3dE7pKaQ0CeWJgRJY_
TOWVBeGkk/edit?usp=sharing
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